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ABSTRACT

—_—--£>'A two-step combustion process, consisting of monopropellant (i.e. one-
reactant) burning followed by bipropellant (i.e. two-reactant) burning, is
considered. The original reactant, namely vapor from a liquid droplet, decom-
poses into a fuel that combines with oxidant in the surrounding atmosphere.
Complete responses H(D,,Dz) of the evaporation rate M of the droplet to
the DamkBhler numbers D,,D, of the two reactions are determined in the limit
of large activation energies. Conditions under which the response is mono-
tonic or multi-valued (thereby exhibiting auto~ignition and auto-extinction)

¢ are identified. Previous conjectures, based on DamkBhler-number asymptotics,

are found to be mostly correct.
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A SIGNIFICANCE AND EXPLANATION
N
b, Asymptotic methods are responsible for remarkable advances in combustion
) theory over the last decade, however they have been largely limited to single-
o]
: step reactions. This paper uses such methods to investigate an example of
2.
""* multiple-step reactions, which are of greater practical interest.
The following two-step process is considered. Vapor given off by
'q evaporation of a liquid droplet decomposes into a fuel. (This decomposition
5 constitutes the first step of the combustion.) The fuel produced then reacts
L,
.;. with the surrounding oxidizing atmosphere in the second step. The burning of
A
:_: a hydrazine droplet in oxygen is an example of such a reaction.
o The goal of this investigation is to determine the evaporation rate since
F ' it mesasures the rate of consumption of the reactants, a quantity of primary
: interest in the applications of combustion theory. This is accomplished by
o
L2 using the method of matched asymptotic expansions based on the physically
A realistic limit of large activation energies. Evaporation rates which are
l."‘ ) . .
:. proportional to the droplet surface area or to its radius are found. 1In S,,i_m For o
-i NTIS GRA&I !
addition, conditions for ignition and extinction are identified. DTIC TAB &
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>, The responsibility for the wording and views expressed in this descriptive -
summary lies with MRC, and not with the authors of this report.
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DROPLET DECOMPOSITION IN A REACTIVE ATMOSPHERE: .
COMPLETE RESPONSES FOR LARGE ACTIVATION ENERGIES

H. V. HcConmughey. and G. S. 8. mdford“
J. Introduction (.

The central question of combustion theory is to determine how fast the reactants are
congumed. When there is a single-step reaction this amounts to determining the burning
rate M as a function of the so-called Damk8hler number D; other parameters may be
involved, but they are supposed to be held fixed. For example, consider the bipropellant
(i.e. two~reactant) burning of a fuel droplet, in which the ligquid in a spherical droplet
evaporates at its surface and the 7apor is oxidized by the ambient atmosphere in a
concentric reaction zone. The DamkBhler number depends notably on the rate of chemical
reaction, the ambient pressure, and the radius of the droplet; any of these can be used to
vary D. The response M(D) is to be found for various values of three additional
parameters: the droplet temperature Tge the amblent temperature T_, and the latent
heat of evaporation L. The shape of the response curve depends on the (fixed) values of
T, - '!. and L. '

In general, the analytical determination of M(D) is prevented by the nonlinearity of
the governing equations, which persists in the (Arrhenius) reaction term even when simple
geometries (such as that of the droplet problem) are adopted. The Arrhenius nonlinearity
has been overcome by asymptotic methods, in which the activation energy & tends to
infinity; this is a physically realistic limit since many reactions of interest in
combustion 40 have large activation energies. For the fuel droplet this leads to

monotonic, S-shaped, and (for the practically unimportant case T_ < '1") C-shaped response

Current address: Mathematics Research Center, University of Wisconsin, Madison, WI
53705. Permanent address: Department of Mathematics and Statistics, Mississippi State
University, Mississippi State, M8 39762.
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curves, depending on the values of T - 'l'. and L. Similar results are found for the
monopropellant (i.e. single~reactant) burning of other droplets, in which the vapor
decomposes into products in a concentric reaction zone. (See Buckmaster and Ludford (1,
pp. 100 and 127].)

Asymptotic methods are responsible for remarkable advances in combustion theory during
the last decade, even though they were largely limited to single-step reactions. A recent
account of some of these successes has been given by Buckmaster and Ludford (2]. Neverthe-
less, the need for a more thorough treatment of multiple-step reactions has been recognized
for some time, and isolated efforts are now being replaced by broad action.

The simplest problem of combustion theory is the steady, unbounded plane flame, and it
is natural to begin an investigation of multiple-step reactions there. That restricts the
discussion to premixed flames, i.e. the combustion of reactants that are already ﬂx&,
because plane diffusion flames, in which the reactants are originally separate and must mix
by diffusion, only exist when limited in extent. In order to extend the existing
discussion to diffusion flames, we have therefore adopted a spherical geometry which,
because it is still one-dimensional, introduces a minimum of complications.

The multi-step reaction that we have chosen to examine is a combination of the mono-
propellant and bipropellant reactions mentioned above that also has practical interest.
Vapor from a droplet decomposes at a premixed flame into a fuel (and possibly other
products) that is oxidized by the ambient atmosphere at a diffusion flame (Figure 1). The
complete response of the burning rate to the two DamkShler numbers l),,l:)2 is determined as
the two activation energies 6 1,02 tend to infinity. (An atmosphere hotter than the
droplet, i.e. T_ > 'l'-, is assumed since the reverse is not of great practical interest.)

A popular experimental study of this type of hybrid combustion investigates the
burning of a hydrazine droplet in an oxidizing environment. Variation of the evaporation
rate with droplet diameter or with pressure are typically measured (Dykema and Greene (3],
Lawver (4], Rosser and Peskin (5], Allison and Paeth [6]). Hybrid droplet combustion is
aleo msntioned by Williams {7, pp. 246-7], who points out the need for theoretical

investigation of the process. Our results can hardly be compared quantitatively with such
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! Pigure 1. Schematic representation of droplet whose vapor decomposes in a reactive
environment. m = monopropellant vapor, f = fuel, o = oxidant, P = products.
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experiments, but their qualitative features suggest that more extensive experiments should

be madas.

a'a

Theoretical work on the problem has been done by Fendell [8] and by Buckmaster, Kapila

and Ludford [9]. Both these investigations are based on DamkBhler-number asymptotics, i.e.

saiscsale

large or ssall Dy and large or small D,; hence they can described at most the “corners®

of the complete response surface M(D,,D,). Fendell identifies the resulting burning-rate

§ formulas, vhile Buckmaster et al. clarify and add to Fendell's results, suggesting how the
: valid corner values are connected by the “"edges” of the response surface H(D‘,Dz). The
b latter authors acknowledge the tentativeness of their findings and the need for analysis
3' with finite Dy and Dy, recognizing that "such analyses can be carried out when the
l activation energies 0 1 and 92 are large, but such a description is quite
complicated...”.
’ Details of the complication have been excluded from our account as far as possible.
' Of the 18 types of asymptotic solutions we describe just 3 typical ones, relegating the
f supporting analysis (in the main) to impressionistic appendices. However, the tables and
: figures do give a complete picture of the results and further information can be found in

McConnaughey's thesis [10]. Finally, the results are shown to agree with earlier, well ‘ %
:f established findings, and are compared and contrasted with the conjectures of Buckmaster et -.j
al. [9]. :
: 2. Formulation e
;E The problem formulation and notation of Buckmaster et al. [9] is adopted. The ;.;
'.; governing equations in dimensionless form are ':3
) L(Y) = Dyu,, L(Y,) = =D @, + Dyw,, L(Y ) = D,w,, L(T) = -Dyw, - QD @, , (2.1) q
: where .
M -
[+ L = a%/ar® + (2rm/rllezar, o = Y, exp(-0,/T), w, = Y,¥_ exp(~8,/T)

and the other quantities are defined in the list of symbols. The boundary conditions are

& av Y av ' Lq

2

. —E - - —1 - -—3 - Q- - - -
e r=1: ax H(Y. 1), ar HYf. ar HYO. dr ML, T TB ’ (2.2) .

A -
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r = !‘-0,1 'O,YO-YO.,T-T.>'!" . (2.3)

4
A derivation of this model is sketched by McConnaughey (10], based on a more general
development given by Buckmaster and Ludford [1].

Equations (2.1) can be combined and integrated subject to (2.2) and (2.3) to yield the
Shvab-Zeldovich relations

-M/T

Y- + 'g - Yo 1= (1+ !o-)c (2.4)

y-+q1°+-r r. z.+1+(1'_ 1.01. 1+q1°.). ¢ (2.5)

which are valid everywhere. Thus only two of equations (2.1) are needed. We select
equations (2.1a) and (2.14) and the corresponding boundary conditions to form a fourth-
order system subject to five boundary conditions. The unknown constant M is thereby
determined as a function of the various parameters which appear.

The objective of this work is to describe the behavior of "“’1'”2’ for all values of

its arguments, by considering the independent limits 01 + @ and 02 > o,

3. cs_and Results
In accordance with the usual strategy of activation—energy asymptotics (Buckmaster and
Ludford [1); Kapila and Ludford [11]), the Damk8hler numbers are written
Di = Di oxp(exﬂi), i=1 or 2 , (3.1)
where T; is a positive parameter and D; is at most algebraic in 6 e The ith reaction
term then contains the expression Di exp(0 1/'l'i~0 i/’!') and the limjt © ' confines the
associated chemical activity to a thin layer either at temperature Tie ™ Ti with

thickness of order 'ri/@i or at temperature '1'1, > T, with thickness of order

oxp[e(Oini.-Oi/‘ri)), where ¢ = 1/2 or 1/3. The reactions are negligible outside of

these flame sheets, hence the majority of the combustion field is described by the linear

l'_. l.; &]

system

- l:a:c -

L(Y-) = L(P) =0 . (3.2)

Matched asymptotic expansions are then used to describe the solution inside and

outside the flame zones.
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3.1. Solution Categories
The solution obtained by this method depends on the assumed flame configuratiom and

[T N %

flame types. With the location of the decomposition reaction denoted by ry and with the

n‘-l"’li

bipropellant flame at rp;, it is found that all possible configurations for which

LRRL N LN

1< z, < r, < ®» admit a solution. lhothgt or not Y _(r,), Ye(r,) and !O(tz) vanigh as
6 i + @ determines the nature of the flames, which is often not unigque for a given fiame

" arrangement. BRence, for each configuration, it is necessary to consider separately the

o various types of flames possible, i.e., partial vs. complete decomposition at 2] and a
complete-burning (or so-called Burke-Schumann) diffusion flame vs. a partial burning flame
at ry. When all possible combinations of flame locations and types are investigated, the
cases shown in Table 1 are found to admit solutions of interest. (Other conceivable cases,
see McConnaughey [10], are omitted; they correspond to special cases whose treatment has

: been omitted for simplicity.) The first thirteen categories represent separated flames for
which M = 0(1); the next four correspond to merged flames with M = 0(1); the last is
the only configuration for M >> 1. The asymptotic analysis of these different

possibilities is illustrated in the following sections and associated appendices.

3.2, Separated Flames with M = 0(1)

Solution category 6, which is illustrated in Figure 2, is consider¢® here. The
reactionless system (3.2) is valid for 1 < r < Ty Ty <r<ry, and ry, < r <% the
leading terms of the corresponding asymptotic expansions are

W
A 1<r<r1: !--1-.

-/r

r
VeWr, 1w T, oL+ Le™e . (3.3)

r, <r<c<r,: Y--O,T-‘!.-L*1*('!.’T.¢L‘1*QY°.).-H/! ’ (3.4)

X
rp¢rce; v.-o,-r-r.-x.+1+g+(-;-.-T.+L_,_Q)e-n/ ,

where conditions and relations (2.2) = (2.5) have been invoked as have Y. (ry) = o(V),

Yg(rz) = o(1), !o(rz) = o(1) and continuity to leading order of Y., Yt and Yo at r,

and Ty
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Tadble 1: Description and caterorization of flames which admit a
solution of interest. X
3’."&3 _ Description !‘
1 . r *lcry <o X(r) =o(l); X (ry) = 0o(2) ‘
2 Ty =1 <1y <o Y(ry) = o(1)s ¥ (ry) = 0(1) &
3 T *ler, <o X)) = 001); Y (r) = o(2)
Y r .1 Tty < @ Tlr,) = 0(1); Y (r,) = 0(1)
5 el e
6 1er <r, <o Y (r) =o(1); Y(r,) = o(1)s Yo(rz) = o(1)
7 ler <rce Yolr,) = o(1); To(r,) = 001)
e ler <y cm ¥ (r)) =o(1); Tplry) = 0(2)s Y (r,) = o(2)
9 1<r <7y < m Yo(r,) = 001); Yo(rz) = 0(1)
10 1er, <ry=e; X (r) =o(1)
1n ler cryco !-(r]..) = 0(1)s Y (r,) = o(1)s !o(ra) = o(1)
12 1er <ry <o X (r)=00(1)s Xry) = 01); X (ry) = 0(2)
13 ler <ry=o Y (r)) = 0Q2)
1 1= e,
15 1er, =ry <o X (r)) =0(1); Yo(ry) =0(1)s Yo(rz) = 0(1)
16 1erp or, <o X (r) =00 Y,(r,) = 0(1); Yo(ra) = 0(1)
17 et
18 N»lirelir, e

-7-
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Since Y-(r) ¥ 0 for r <r,, the temperature must be less than T; in that region,

f for othervise the reaction term DY exp(01/'l‘1-91/‘r) would not be negligible there. In

:‘ order for the reaction to become important at ry then, we must have 'l'(r,) =Ty > 'r'.

5 Given this and continuity to leading order of T at ry and Ty, the solution shows that

g Il/r1 T T +L-1+QY°. " '1'1-'1' +L H/r1 M/r:z

e -—.__'!'1-1'.+x.-1 ,c-( T e ¢ ® -1+Y°-.

:" The outer expansions alone have therefore determined M, ry and r, as functions of

.'4’ various parameters. In order that these results be consistent with the hypothesis

‘; 1< ry < xy the following conditions must hold;
::‘ L>0; 'r.-z.+1 <T, <T(r,) or 'r(rz) <T, < T.-LM ' (3.5)

whers T(r,) = ['r_+!°.(1'.-x.+1+q)]/(1+vo_) : Tuge -
', It is also necessary to examine the structure of the two flames in order to discover ﬁ'-::.
vhat additionni conditions restrict the validity of the above results. Such restrictions ...j
: amount to existence conditions for solution of the inner problems at T, and Ty vhere ~
:~ the expansions must match the outer ones. The associated analysis is sketched in Appendix - ;::]
; 1 and adds the requirements
- Ty € Tgg! Ty ?-'mzl when Ty > Tyg - p
'_:: This completes the investigation of category 6. In a manner similar tc v.hat just

: demongtrated, the solution in each of the separated-flame categories 1-13 along with

restrictions on its validity are determined. The burning rates are listed in Table 2 and

the supporting analysis has been given by McConnaughey [10].

3.3, Merged Flames with M = 0(1)

‘;':' The outer problem for merged flames (Figure 3a) is much the same as for separated
flames. The analysis of merged-flame structures, on the other hand, is not a straight-

forward extension of the inner problems associated with separated flames. Both reactions
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o Table 2: Burning-rate formulas for separated-flame categories in Table 1.
)
2 -
3 Sl
'l
- My = Inl(T T +L-14QY, )/(L=1)] B
_ M = ln[('l‘z-'l'.ﬂ-ﬂ)('I'_-‘!'.*t--i'Q)/(L-ﬂ('!2—'1'.+:.-1-Q)] y
5 My, =M,
. My = nl(2T, T -7, 4-1)/(1-1))
> Mg = Lal(T T +L-1)/(L-1))
Mg = In[(T =T 4L)(T T 4L-14QY _)/L(T -1 +L-1)]
- M, = znt('r,-‘r.ﬂ-)('1‘2-'1"+L-1)('1'_-1"+L-1-Q)/L('r1-'r.+t.-1)('rz-r.+x.-1-9)1 ‘
::‘ " - "‘ '.::
s Mg = In[(T P +L) (27,1 T, +L-1)/L(T ~T +L-1)]
X Myg = An[(T =T +L) (T T +L-1)/L(T =T +L-1)]
\ Myy = L0277 _-T +L-QY )]
~
=, M2 = Mgy
g My3 = Lal(2T T T +L)/L]
Zs
(“!
-7y
-;- ::..‘
=
|
-10- X
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now occur at the same 0(1) location, and the problem becomes analytically intractable, in
general, if they are indistinguishable. To circumvent this difficulty, a model of the
merged flames is considered in which the two reaction zones are distinct, with thicknesses
of disparate orders. The thinner flame is embedded in the broader flame and appears as a
discontinuity on the scale of the thicker sone, as shown in Pigure 3b. This model was also
used by Kapila and lundford (11]. In the present work, the flames for which the
decomposition-reaction zone is the thinner one are referred to as Type A flames; those with
a comparatively narrow diffusion flame are called Type B flawes.

A third kind of merged flame is also considered. In this Type C flame, both reactions
are spread over the same of(1) interval at r,, but the structure problem becomes
tractable by assuming that the right and leit side of the fuel equation (2.1b) are of
disparate orders. This requires that Ys be small and that the right side dominate
equation (2.1b). The situation thus described is a decomposition reaction in which very
little fuel is produced relative to the amount of monopropellant present, and whatever fuel
is produced is immediately consumed by the bipropellant reaction.

The kinds of structure problem which result from the models described above are

»

illustrated in Appendices 2 and 3, which consider the structures for solution category

o« a
%
*it.

15. The outer solution and structure results for that category are as follows.

A ;l

Assume that the monopropellant and bipropellant reactions both occur at r = r,,

5

with 1 < Te < =, and that '-‘r.) = o(1), 'f(r') = o(1), ‘o(r.) = 0(1). The O0(Y)

solution of (3.2) which satisfies these assumptions and conditions (2.2) - (2.5) is then

e
1<r<re Y =1-0 o Wr 1= LeafeVr (3.6)

Tg << Y = 0, T = ‘r.-!.ﬂm('r_-'r.ﬂ.-i-q)ow: . (3.7)

In order for the decomposition reaction to take place at r,, the temperature there
must be T, with T, > Ty It follows that

wr T -T +L~-1=Q T,-T +L W/x
. - hd , .n - (_l_J—). * (3.8)
T"T-'*L'1'Q L

»i
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Pigure 3.

S

T

(a) Appearance on the 0(l) scale: a

«} the two reaction zones are indistinguishable.
the thinner, decomposition flame appears as a dis-
on the scale of the bipropellant-reaction zone.

Figure 3b

Representation of merged flames.
single discontinuity at r
(b) Type A structure:
continuity at n,
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Consistency with the hypothesis and nonnegative mass fractions requires either

L >0 and nx('r.,'r.-qu,r”) <T T,

1

L>0 and T <T, < un('r.-x.ﬂoq,'r“) .

1
Since Y, can vanish for r ¥ r,, the bipropellant reaction can occur at r, if T,
does not exceed T,.

The flame structures must now be analyszed to uncover additional constraints on the
validity of the above results. Appendices 2 & 3 treat the case where T, is less than
Ty, hence only Type A and Type C flames are considered. (Type B flames 4o not exist for
Ty < Ty, as may easily be -.hova.) It is found that the results (3.6) - (3.8) are valid

for

L>0; T, <T.; and llx(‘l",‘r.-l’-'ﬂiq,‘!”) <T, <T,6 or

2 1 1

(3.9)
max(T,, T -L+(140)/2] < T, < min(T -L+14Q,T,.) .

An approach similar to that just described yields the results shown in Table 3 for
merged-flame categories 14-17., Details of the analysis are given by McConnaughey [(10].
Table 3: Burn rate formuias for merged-fl categories in Table 1

My = A00(T T 42-1-0)/(L-1-Q)]

Myg = 28007 7 40) (T P +L-1-Q)/L(T -7 _+L-1-Q))

Mg = My5

3.4, M > 1
Por M >> 1, relations (2.4) and (2.5) become
Y-+Yf- Yo- 1, !.+Q!°+'!'-'1‘.-L+‘l . (3.10)
for r < ® wvhile equations (3.2) imply that Y and T are constant outside of the

flames, which is incompatible with the boundary conditions (2.2). There must therefore be
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a reaction sone at r = 1. In addition, equation (3.10a) can only be true if Yo(r) = 0

everyvhere, since the sum Tt Y, ¢ Y, cannot exceed unity and 'lo > 0 (by definition of

mags fraction). But this violates the condition !o - Yo. at r = ®, 5o that there must

aleo be a layer at r = », Clearly the remote reaction must be the bipropellant reaction,

TN
. ‘

while the decomposition reaction occurs in the surface layer and entirely consumes the
sonopropellant there. Hence,

Yu(r) = 0, ™(r) = T ,~L¥1 for 1 <rce

The analysis of the reaction zones is given in Appendix 4 and leads to
— =1 2
LR R /zn; 8y (T, -L+1) exp[0, (T _-L+1-T, )/2T (T ~L+1)] (3.11)
which is valid for

0 ¢LC1 and Ty < T L+t . (3.12)

4. Discussion of Results
4.1. Description of Regults

Considering the limit of large activation energies yields an 0(1) burning rate M

< in solution categories 1-17. The dimensional evaporation rate M thus varies with the
L]
-': dimensional droplet radius a, i.e.
ek
A - -
% M=ka , (4. 1)
, ]

where k is a constant with appropriate units. Solution category 18, on the other hand,

-1

gives M ~ /ﬂ for sufticiently large T, in which case
% -2

~\ " - h * (‘12)
o
:‘ Note that this is only possible for L < 1, i.e. when the heat of decomposition exceeds
that of vaporization, but in practice this is almost invariably the case of interest

A,
- (Ludford, Yannitell and Buckmaster [12]).
3: It is well established that (4.1) holds for pure bipropellant burning and for
.’-"' decomposition of small droplets in an lnert atmosphere, while (4.2) holds for simple
- decompositional burning of relatively large drops (Williams (13)). BExperimental evidence

'. of the relation between i and a for the hybrid combustion problem considered in this
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work, however, is limited and inconclusive. Invegtigations of the decompositional burning
of a hydrasine droplet in oxygen do suggest, though, that (4.2) is satisfied for all but
the smallest droplets, when (4.1) holds (Dykema and Greene [3]; Rosser and Peskin [5);
Allison and Faeth [6)).

An increase in droplet diameter results in an increase in the reaction rates Dy
and D,. (Recall that it is the variation of M with Dy and D, that is sought
here.) Definition (3.1) indicates that the response H(D,,Dz) may be described
qualitatively by the behavior of n(r;',1;1). The latter is deduced from the results
reported in (3.11), Table 2 and Table 3 by allowing Ty and T, to vary in the burning~
rate formulas while all other parameters are held fixed.

Different responses n(r;"r;1) are found in each region of the parameter plane shown
in Figure 4. The domain of the response associated with selected regions is shown in
Pigures S. Pigures 5a-5c show that H(T;i,r;’) is a single-valued function when T.dr'
is positive and greater than <~L+14Q. The resulting response surfaces are found to be
continuous and monotonically increasing with r;' and Tr', as illustrated in Figures 6.
For any point on these surfaces, the flame temperatures do not exceed the ambient
temperature T, and heat is gained from the atmosphere; the decomposition at r, is
complete and all fuel is consumed at r,.

When 0 <T -7 <-L+1+Q is satisfied, the function n(r;',-r;') is multiple-
valued over part of the domain, as illustrated by Figures 54-5f. The flame temperatures
are no longer bounded above by T, and heat is now lost to the ambient. Decomposition
at ry is complete in Regions IV-VII; it is only partial in Regions VIII-XIV for certain
values of T, and Tye In Regions IV and V, the fuel is entirely oxidized at ry, while
portions of the responses associated with Regions VI-XIV correspond to partial fuel-burning
diffusion flames.

The multivaluedness of H(T;1,T;1) is manifested by the appearance of folds in the
response surface, as seen in Figures 7, and corresponds to the phenomena of auto-ignition

and auto-extinction of one or both reactions. The lower turnaround point in a congtant=T,

(or T,) cross-section of the surface is the ignition point at which the solution jumps

-15-

N T P TR oy S

Pl

l'l "
A A oA

PR}
2

t <
nd




a s e I T T T & T Ve

’

--.

»

--.

-. .

--n 00 «0 AL ] -L

- Z/U A-TO+T = %’/ XA-T)(B+T) = £ (°39uz0d 3J9T I9mMOT IY3 03 pappe el

“.. oq Avw suoTsTATPQNS 2I0M IMOJ sv Auew s ‘7 =0:8 > 0 10d) 2z < x5 o )

) J0F UARIP (T STQVL UY $@720583¥D UOTINTOS Y3 uO (ZI'E) PuU® ‘(6°€) R

] : ' .u‘.

) ‘(g°€) sw yons suoTIOYIIsax Aq suwyd yejemwawd 77 ‘sA ..-.ul.—. 943 JO UOTSTATA ¥ 9anbTd o
O+l e/0+l 2/0+) X} 2nr .

-

-
|

.y

N TETITITITETITETA T

=16~
2y RN, ;L"‘~A'-'L‘. 2% 2 s e . "‘I'—

4 -

- . o
LY ,-'ou--“-
IR L .'.. "




R~
Hhaar Rt A

RN NS

.
.
-

18y
ata

e A

Caltatals

-
£
2.

'.'A-' ¥ ..-.'."; A

4

-

o

"l-
-

rARE - ' . ‘.
‘o. -.-. ‘ A“ .“- l‘. l.‘ l..

»

\'-v

.
‘g
e

- -1
Tz' REGION I }’z REGION I

A B c A B

Pigure 5a Figure Sb

'{;' REGION II

A D

Figure 5c

(See caption on page 19.)

-17-

.........
.......

b
¥
-
-
1
;‘]




(X%}
AWy A

RO

REGION 1V

MG ,M7 sMIO

T REGION V

Mﬂ MS MI MG'MIS'MW

M ;M My
My Mo | Ms
X

L _T'
B A D

MG 0M7 |MIO

Figure 5e
(See caption on page 19.)

-18-

A IR

i J e

e

W eI T
LoV IIES Iy

TN
0 o,
K

P
-~




R S A A CAEREL CLCLER IS OL S CEES Sk COETELE RS A CALR S
-, - e AT f

A T S R AR A I A i kSl vl e

Lo et

"
»
D
ﬁ

REGION XII

Me: Mm
Mg
M|5 Mi

Mo,
M,

Pigure 5f
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their respective domains; shaded areas are detailed at right. A = T %,
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Response surfaces in Regions I-III respectively.
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Figures 7a-c. Response surfaces in Regions IV, V and XI1I respectively.
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from a nearly extinguished state up to an ignited state as 1;1 (or ’1';') is increased
through its local maximum. The upper turnaround point is the extinction point where the
solution jumps from an ignited state to a weakly reactive, nearly extinguished state as
;' (or T;') is decreased through its local minimam. The middle level, vhich is
bypassed, is believed to be unstable since it implies a decreasing burning rate with
increasing reaction rate or pressure (Buckmaster and Ludford (1]; Kapila [14]).

The responses in Regions IV, VI, VIII and X differ only in their middle level, hence
the realizable responses in these regions are the same. Similarly, Regions V, VII, IX and
XI share responses which are effectively the same, as do Regions XII-XIV. Figures 7a and
7> thus indicate for Regions IV-XI the possibility of ignition and extinction of both
reactions simultaneocusly or of the bipropellant reaction alone. PFigure 7¢c shows that where
ignition and extinction occur in the response of Regions XII-XIV, they occur in both

reactions, ignition being possible only when the diffusion flame is remote.

4.2. Comparigon with Related Works

Thres “edges” of the response surfaces found hers represent previously addressed
problems, so-that related results may be compared.

The bipropellant reaction is found to be remcte for 0 ¢ T,' < min(r;l,7.')1 the
burning rate is then controlled by the decomposition reaction alone. The corresponding
edge of the response surface therefore describes pure monopropellant decomposition. That
problem has been considered by Linan {15] and by Ludford, Yannitell and Buckmaster [12] in
the limit of large activation energy. Por T . < T,, the work of Ludford et al. produces
the burning rates Mg, Mygs Mq3s Myq and My, in the same regions of the T, - ‘1" vs.
L parameter plane and with the same domains as found in the present work for
1';‘ < un('r;;,r:'). Similarly, there is agreement between the associated response curves
M(Dy) obtained by Ludford et al. [12] and the constant-T, cross-sections of the response

1

surfaces found in this work for 'r; < '!';; Lindn [15] obtains the above expressions for

M, but does not specify the parameter values for which each is acceptable.
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Wext, it may be noted that for Ty < 'r' and L > 1, the decomposition flame is
sitting on the droplet surface and the problem in 1 < r < » ig that of an ordinary fuel

drop at temperature 'l.. but with latent heat L-1. Appropriately modifying the results

RASRY. J IR

of law [16], obtained via activation-energy asymptotics, yields burning rates M,, M,, M,

and Mg3 the corresponding response curves ll(bz) are consistent with the eoncnnt-‘l',

e 1 I

cross-sections of the response surfaces found here for L > 1 and T, ¢ !'.
Finally, the results of Buckmaster, Kapila and Ludford [9) are considered. As N

* mentioned earlier, these authors used DamkBhler-number asymptotics in their treatment.

They were thus able to determine only the three “cormers®:

lim M(D,,D,), lim {lim W(D,,D,)], 1lim [lim W(D,,D,)]
D, v® D,*0 D+ - D,*0 D +=

D,.D, 1*9 0,

of the response surface. The expressions Ny, Ng, My, and Myq were obtained. Formula
Mg was also found by considering the limit 0‘ +® for N > 1. More precisely, they

found

.} for L ¢ 1

18

-1
lim M0D,D,) ={ W, for 1<CL<C1+Q+Y (T T)
D,/D %= °
-1
My for L> 1 +Q4+Y (T 7))

n for L < 1

18

lim (1lim I(D‘,Dz)l b

0200 D'“ Is for L > 1

o, .

DA

ll
It

i) -3?. *

lim {lim l(D,.Dz)] =M

0100 Dz".

-

in agreement with the corresponding corners of the responses found in the present work.
Discrepancies exist, however, between the nature of the curves connecting these corners as
* conjectured by Buckmaster et al. and the curves dictated by the finding of the present

work, as illustrated in Figures 8.
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Appendix 1: Structure Analysis for Category 6
it ) 4%

The problem within the decomposition flame, given by (2.1a,d), (3.3) and (3.4) is

c!za:-/dl:2 - -<lzxt/<!€2 =- x-sioxp L
ax /8 + Wrd, ax /8E + T T LY/} as G-

ax_/dE + 0, ax /oK ll('l.“-‘r.ﬂ.d)/ti as £+ 4=,
vhere

g-g1+¢:,e-rf/o1 <« 1,51-39;-0(1) .

!- - cx-(E) +ole), T = T, "‘t“) + o(e) .

This may be rewritten as

2dzx- dx- dx-
dyz -x.cxp(cy-x-),d—y-*-i as y*‘.dy—oo as y * o (a1.1)

where y = lE/:i + c.‘[aoﬂn(zs‘r:/nz )1, a = (T,F +~1) and a is an undetermined
constant. Boundary-value problem (A1.1) has been treated numerically by u;n'n [17]) whose
results indicaéo that a solution exists provided

1.'1>'1‘.-I.+1/2 if x.+c>0 as £ » b

?..>'r.-:.+1 if ,&’o as & + 4o

Diffusion-Flame Zone

The following holds in the diffusion flame.

L 6b° +o0(8), T=7T st cyt(m + ol8) ,

B

a®y /an? = -50D1Y,Y exp(0, /1.0 /T ) (A1.2)
Yo 2°¢°0 2/%2™2/ pg? ¢

yt"-bz!\-ﬂa3 as N *+ ==, yt~b1n+b‘ as n + b

where 0 = (pgz)/s, § << 1, by is a nonnegative constant, T, € Tygr by =

2
n('r--'r.m‘l-Q)oxp(-n/rz)/r:, bz = n(l'.-'l"ﬂ-ﬂoro')oxp(-l/rz)/rz, b, and b, are

-31=
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undetermined constants, and Y, and Y, are given by (2.4) and (2.5). Consider
Ty € Tyge Then (A1.2) may be written as

2, y ~ h as x ¢ ;. ’ (A1.3)

tlzr/du2 =- xz-y
yg{n) = yt(n) - (b1+bz)n/2-(b3#b‘)/2. x = (bz-b1)n/2*(b3-b‘)/2 v
and where the small parameter § has been chosen according to
3 2 -1
87 = [(b,=b,)/2]7(D)) 'Q exp(6,/7, . ~0,/T,) .
Physical considerstions require
y € ~ix|] for all x . (A1.4)
Equation and boundary conditions (A1.3) constitute the standard structure problem for
a Burke-Schumann flame which has been shown by Holmes [18] to possess exactly two

solutions, only one of which satisfies (A1.4).

Appendix 2:; Structure Analysis for cCategory 15; Type A Flames ;

D =Pl Zon: ;
The appropriate expansions in the bipropsllant-reaction zone include ,,:
r=zx, +8n, LA Gy-(n) +o(f), 7= ‘1'106yt(n)+o(6) . :'_-':

-2 -

vhere § ° = DJY _exp(8,/T,=0,/T.), Y o = ¥ (r,), 6, >> exp(cb,)) with c> 0, y, <0 for

n¢<n,y =0 at N, y <0 or Y =0 for n>n, with n, the location of the

decomposition reaction. The function y-(n) thus satisfies

2
dy dy dy
B ao(1) for n‘n. -4 as n*-,-—.*l)unoi-.
an > '*f an r2 an
L}

Continuity of Yur Yo and d(y-*yt)/dﬂ at n, is required, therefore

co-lln/rf for n<n, y, "= co-lm,/r3 for n>n, ,

- dy, - dy
Y (0g) =y (), E () = =] + Ko (a2.1)
4

wvhere the congtant ) is undetermined. The equation for Yy becomes
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2

X

2.
.;._

0 - S R

_;: dzy‘/dn - yt e1n LY fox n < n,, dzyt/dn = Y c,n S, for n>n, , (A2.2)
( wvhere c, = M(T -T 0!.)/:‘2 c, = M(T T 0-1:.-1-9)/32 ¢, = (c,~c.)n +c, and c, is

o 1 177e "/ Ter G 1™s * 4 17537 7e7% 2
:-: determined by matching higher—order terms. The solution of (A2.2) must satisfy (A2.1) as
.
1:: : well as

Y

‘b .

’ d’t/d" > c‘ as N & -=, d’t/a' + ca as N + 4o
E.o It follows that
by n-n, n-n

' 1 = cge + c1n + ¢y for n < n,, yt = cqe + csn + c, for n>n, ,

::‘ where Cg = -W!tf. The requirement Y, €0 for n < n, is therefore met provided
22 Ty > T, - L+ Q2.

2

S Plame Zone

‘“3 In the monopropellant reaction at n,, the following is valid.
.

9 T = r, el Y o= by, tet ex (E)tole), T =T, +ex (E) +ole)

3

N, _

:-." where € = 11/01, Y, " y-(n,), and the components of Y, preceding cx- are constants.

1 *

! Yor y, # 0, the problem for x (£) is

a0 t

a’x x  ax ax

AEI t ~ t t —_—

N —— — - .
\% “2--010,“*es+e1>0nto-,dzoes+c3<o as £+ 4>, S
o vhere 5' = c&y- D; = 0(1). Integration shows that cy = =cj. -
n * =

. 3.

s Por Y = o(¢) at n,, the structure problem is equivalent to (A1.1) with 3
j @ = T T 4-1-0/2.

J It follows that a Type A merged flame may exist for category 15 if 01 >» cxp(zﬂz)

..J ~

with ¢ > 0, and if nx('r'-t.ﬂ*Q/z,'rz) < '1'1 <T,6 or uz[-r.,r.-w(um/z,rz] <7y,
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X ndix 3: e _Analysis for Cate 15 C _Flames »
N The problem in the Type C flame gone for category 15 is J
‘; dz’i -~ ‘”& M ::!

? dﬁz - D,x-ﬂp[csﬁ*do-("mx-), i r—z. as £ » -w, i 0 as § +» 4=

X -
X,

2
vhere Y, = ex (£) + o(c), T =T, + cxt(E) +ole), £ = (r-r,)/e, € =T./0, ,

31 - czo; = 0(1) and &, is an undetermined constant. This may be rewritten in the form

3 1
;.3 of (A1.1) and a solution thus shown to exist provided T, 2 ux['l'.,'r.-l:.ﬂﬁg)ﬂl or

X T LeQ < T, < T
A The small amount of fuel produced in the decomposition reaction is
i x

. = ep? t
M Y, = €D’ x e /[Dz'ro,oxp(ﬁzﬁz-ez/r1 )], which is indeed o(€¢) since T, > T, and

X 02 >» 1.

o

-'l

-
- Appendix 4: Structure Analysis for Category 18

Surface laver

_\ The region adjacent to the droplet is described by [ = 7-1 (r=1) with y << 1, and
x -

g the burning rate M is of the form M =Y 11! where N = 0(1). within this layer, the

following holds.

- Y, = L) ¢+ o{1), T=¢() + of(1), t = '!,-!-“‘ll .

'

.

o dn_ m. 2 -

. - L} -l - - - =

) 2 N a = YD exp(01/'r‘ 01/1:)) a = N(mw-1) = -NL, m = 1-1, at 7 =0 .,

ag

Let £, label the smallest value of { at which t(Z,) = t, = max(t(Z)]; take Y =

[D;cxpw'/'r'-oi/t.)]‘vz and require T, < te. Then the decomposition reaction occurs at

WAV AIARE

r=1+Yy;, and

= 1-exp[N(£=g,)] for § <&, m~0 for § >, §, = -N tnL .

A
:‘ The structure problem at §, is given by ,
'_: dzx- - :
= - " D,x-oxp(-x-), X, ~ “RE as § + =, x, ™ 0 as € + 4= .‘__-3
> »
L
5 vhere £ = ({~ )/e, € = tf/o‘. - ex (E) + ole), T = ¢ -ex (§) + o(e) and 5

. el
b
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5, = c’o; = 0(1). Therefors, N = /2D, which specifies N. This result is valid

provided L < 1 and 'r,c'r.-x.+1.

Mmots Wegiop
The coordinate of the remote combustion field is R = yr, and the bipropellant

reaction is located at R,. The temperature equation, givea by

2 2 2 -2
a"T/aR” + [(2R-W)/R]AT/4AR = =Y mi!ttooxp(ozﬂz-Ozﬁ) .
is reactionless for R ¥ R, and for any 0' » 1, 02 >> 1 provided the product Y,Y,

vanishes for R ¥ R,. The bipropellant-reaction zone is consequently a Burke-Schumann

diffusion flame with Y, = 0 for R <R, and !1-0 for R > R, Comtimuity at R,

fixes the value of R,.
The etructure problem at R, has the form of (A1.3), hence a solution exists sad mo

additional restrictions need be imposed.
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List of Symbols

dimensionless quantities:

E‘: L/ mass fraction of species A; A =m, f or o
: T temperature
D, DankBhler number, varies with & 2p'; i =1 or 2
(-] i activation energy
Q ratio of the heat of combustion of the bipropellant reaction to
- that of decomposition
¥ N evaporation rate ("burning rate")
r radial coordinate
A : L latent heat of evaporation
‘ o = Dy exp(=0, /7))
>, A positive parameter characterizing the magnitude of D

i

dimensional quantities:

; a radius of droplet )
: P pressure
i evaporation rate, varies with aM )
. subscripts:
:: ] monopropellant
, t fuel
E o oxidant
_: 1 pertaining to decomposition reaction
:‘ 2 pertaining to bipropellant reaction
s surface value
- ambient value
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